17. 분자의 대칭성

1. C_{3v} 점군의 주축 : ②

 $\mathrm{NH_3}$ 의 비공유 전자쌍을 중심으로 $\mathrm{N-H}$ 결합이 120° 를 돌리면 구분할 수 없으므로 C_3 주축을 가지고 있다. 축이 여러 개 있을 경우, 주축은 $\frac{360^\circ}{n}$ 에서 n 값이 가장 큰 경우를 가리킨다.

2. 반전 중심 : ①

반전은 기하학적으로 보면 원점 대칭과 같은데, 이산화 탄소(CO_2)의 반전 중심은 탄소 원자에 있다.

3. 벤젠의 거울면 : ③

벤젠은 각 탄소 원자가 정육각형을 이루고 있고, 탄소 원자가 수소 원자를 같은 평면에서 결합하고 있다. 주축(C_6)을 포함하는 6개의 거울면이 있고, 각 원자를 포함하는 면을 수평면으로 자르는 거울면이 하나 있다.

4. C_{2v} 와 C_{3v} 점군의 예 : ④

HCHO와 H_2O 는 C_{2n} 점군에 속하고, NH_3 , $POCl_3$ 등의 분자는 C_{3n} 점군에 속한다.

5. 점군에 포함되는 대칭 조작 : ⑤

 $\mathrm{CH_4}$ 는 T_d 점군에 해당하는데, T_d 점군은 E, C_2 , C_3 , S_4 , σ_d 를 가지며 반전 중심(i)은 가지지 않는다.

6. 알렌 $(CH_2 = C = CH_2)$ 의 대칭성 : ①

중앙 탄소를 중심으로 양쪽의 $= CH_2$ 는 서로 90° 를 이루며, S_4 대칭 요소를 가진다.

7. C62의 의미 : ①

 C_6^2 의 경우 C_6 를 두 번 거듭 작용한 것인데, C_6 가 시계 방향으로 60° 회전한 것이므로 시계 방향으로 120° 회전한 것은 C_6^2 이다.

8. PCl₅의 C₂축 : ③

 PCl_5 는 삼각쌍뿔 구조를 가지고 있는데, C_2 축이 적도면에서 3개를 가지고 있다.

9. 원자 오비탈 : ②

반전 중심(i)을 가지고 있는 원자 오비탈은 p 오비탈로서 반전 중심은 핵 위치에 있다.

10. 반전 중심의 위치 : ⑤

 H_2O , PCl_5 , $CH_3CH_2CH_3$ 분자에는 반전 중심이 없고 CO_2 , CH_2CH_2 는 반전 중심이 있으며, CO_2 에는 탄소 원자에 반전 중심이 있고, $CH_2=CH_2$ 의 반전 중심은 탄소 사이의 이중 결합에 있다.

11. 120° 회전 : ①

주축에서 120° 를 회전시켜 구분할 수 없는 경우는 C_3 축을 가지고 있다. PCl_3 는 NH_3 와 마찬 가지로 $C_{3\pi}$ 점군을 가지므로 120° 회전시켜 구분할 수 없다.

12. 회전 반사 조작 : ③

에틸렌($\mathrm{CH_2} = \mathrm{CH_2}$)에는 $S_4(90°$ 회전 반사 조작)가 없다.

13. 팔면체의 대칭 요소 : ④

 SF_6 는 팔면체형이므로 점군은 O_b 인데, O_b 의 대칭 요소로는 C_2 , C_3 , C_4 , S_4 , σ , i가 있다.

14. S₄ 조작 : ②

 S_4 조작은 $\frac{360^\circ}{n}$ =90° 회전시킨 다음 σ_h 에 대칭시킨 것이다.

15. T_d의 대칭 요소 : ⑤

 T_d 점군의 대표적 예로는 CH_4 를 들 수 있다. T_d 점군(point group)에서는 반전인 i는 가지지 않는다.

16. 대칭 조작 : ⑤

동등 조작(E)은 분자에 어떤 조작도 가하지 않은 것으로 수학적 필요에 의해 도입된 것이다. 회전 조작(C_n)은 $\frac{360^\circ}{n}$ 로 축을 결정할 수 있고, 반사 조작(σ)은 거울면에 비춘 것을 생각하면된다. 회전 반사 조작(S_n)은 $\frac{360^\circ}{n}$ 로 회전시키고 거울면(σ_h)에 반사시킨 것을 뜻하고, 반사 반전 조작은 존재하지 않지만, 반전 조작(i)은 존재할 수 있다.

17. H₂O 대칭 요소 : ⑤

 C_{2n} 점군에 있는 대칭 요소는 E, C_2 , σ_n , σ_n' 으로 나타낼 수 있다.

18. C₆의 회전 각도 : ③

 C_6 는 $\frac{360^{\circ}}{6} = 60^{\circ}$ 이다. 60° 를 회전시키면 처음 분자와 같아 구분할 수 없다.

19. 반전 조작(i): ①

반전 조작은 수학적으로는 원점 대칭과 같고, 반전 중심은 원자 사이 결합 위에 있을 수도 있으며, 원자 위에 있을 수도 있다.

20. 거울상 이성질체의 점군 : ①

사면체형이면서 카이랄 탄소를 가지고 있는 경우 거울상 이성질체(광학 이성질체)를 가질 수 있고 360° 회전시켜야 같은 모습을 볼 수 있으므로 C_1 점군으로 분류한다.

21. 대칭성 : ②

 C_2^2 조작은 120° 회전을 2회 조작한 것이므로 240° 회전시킨 것이다.

22. CH4의 점군 : ③

몇 가지 주요 분자의 점군의 예를 들면, C_{2v} 점군에는 H_2O , C_{3v} 점군에는 NH_3 , D_{6h} 점군에는 벤젠 (C_6H_6) , O_h 점군은 팔면체형을 뜻하므로 SF_6 를 들 수 있다.

23. 삼각쌍뿔의 대칭성 : ④

 PCl_5 를 생각하면 적도면에 있는 세 개의 염소(Cl) 원자와 인(P)을 포함하는 거울면(σ_h)을 포함하고 있는데, σ_h 위쪽의 Cl 원자와 아래쪽의 Cl 원자는 서로 대칭이다.

24. 점군과 대칭 요소 : ③

SiCl₄의 점군은 T_d 로 대칭 요소는 E, C_3 , C_2 , S_4 , σ_d , σ_h 이고, SF₆의 점군은 O_h 이므로 가지고 있는 대칭 요소는 E, C_4 , C_3 , C_2 , i, S_6 , S_4 , σ_h , σ_d 이다.

25. 암모니아와 물 분자 대칭성의 공통성 : ①

암모니아(NH $_3$)는 C_{3v} 점군으로 E, C_3 , σ 대칭 요소를 가지고, 물(H $_2$ O)의 점군은 C_{2v} 로 E, C_2 , σ 대칭 요소를 가지므로, 동등 조작(E)을 제외하면 공통적으로는 거울면(σ)이 있다.

26. PCl₂의 대칭성 : ②

 PCl_3 는 C_{3v} 점군에 속하고, E, C_3 , σ_v 대칭 요소를 가진다. 주축은 C_3 이고, 주축에 수직인 C_2 축은 없다.

27. S₆를 가진 분자 : ④

점군으로 PF_5 는 D_{3h} , SF_4 는 C_{2v} , 톨루엔은 $C_6H_5CH_3$ 이고 C_{2v} 점군이다. 사이클로헥세인 (C_6H_{12}) 의 점군은 안정한 의자형이 D_{3d} 에 해당한다. 엇갈린 형태의 ethane은 S_6 를 가진다.