한의대 편입 생물의 중심 CORE-BIO

CORE-BIO TOTAL RECALL Weekly Test 6

유전학

- **01.** 진핵생물의 염색체(chromosome)에 대한 설명으로 옳지 <u>않은</u> 것 은?
 - ① 자매 염색분체(sister chromatid)는 후기까지 붙어 있다.
 - ② 진핵세포의 염색체 수는 종에 따라 다르다.
 - ③ 염색체는 DNA와 단백질로 구성되어 있다.
 - ④ 인간의 체세포(somatic cell)는 46개의 염색체를 지니고 있다.
 - ⑤ 분리된 염색분체는 서로 다른 세포로 분배된다.
- **02.** 인간의 세포주기 명칭과 기능이 올바르게 짝지어진 것은? (정답 2개)
 - ① M기 DNA 복제
 - ② G1기 미토콘드리아의 증식
 - ③ S기 방추사 구성 단백질 합성
 - ④ G2기 히스톤 단백질 합성
 - ⑤ G0기 세포가 더 이상 세포주기를 진행하지 않는 상태
- 03. 진핵생물의 유사분열(mitosis)과 감수분열(meiosis)에 대한 설명으로 옳은 것은?
 - ① 감수 1분열과 감수 2분열 사이에 DNA가 복제된다.
 - ② 감수분열에서 세포질 분열이 일어나지 않는다.
 - ③ 유사분열에서 상동 염색체의 분리가 일어난다.
 - ④ 유사분열에서 미세소관(microtubule)으로 이루어진 방추사가 염색체 에 결합한다.
 - ⑤ 유사분열에서 교차(cross-over)가 일어난다.
- **04.** 동물세포의 세포질 분열(cytokinesis)에 대한 설명으로 옳은 것 은?
 - ① 염색분체의 분리가 일어난다.
 - ② 미세섬유를 함유하는 수축환(contractile ring)의 작용이 일어난다.
 - ③ 동원체 미세소관(kinetochore microtubule)의 길이가 짧아진다.
 - ④ 염색체 응축(chromosome condensation)이 일어난다.
 - ⑤ 극성 미세소관(polar microtubule)의 길이가 길어진다.

- **05.** 멘델 유전(Mendelian inheritance)에 대한 설명으로 옳지 <u>않은</u> 것은?
 - ① 대립 유전자의 우열 관계가 뚜렷하다.
 - ② 감수분열 과정에서 대립 유전자는 분리된다.
 - ③ 분리된 유전자는 수정 시 다시 짝을 이룬다.
 - ④ 보조개 유전자와 쌍꺼풀 유전자는 항상 연관되어 유전된다.
 - ⑤ 특정 형질에 대한 이형접합자(heterozygote) 간에 교배가 일어나게 되면, 자손에서 나타나는 표현형 분리비는 유전자형 분리비와 다르 다
- 06. 유전자형이 aabbcc인 식물의 키는 12cm이고, AABBCC인 식물의 키는 24cm이다. 키가 18cm이고 유전자형이 AaBbCc인 두 식물을 교배한 경우, 자손의 표현형 가지수는? (단, 모든 유전자는 서로다른 염색체에 있다.)
 - ① 1가지
 - ② 3가지
 - ③ 5가지
 - ④ 7フトス]
 - ⑤ 9가지
- 07. 성연관 유전자의 발현에 대한 설명으로 옳지 않은 것은?
 - ① 성연관 우성 유전자를 지닌 남성은 우성 형질(dominant trait)이 나타난다.
 - ② 성연관 열성 유전자를 지닌 남성은 열성 형질(recessive trait)이 나타난다.
 - ③ 성연관 유전자에 대한 이형접합(heterozygous) 여성은 우성 형질이 나타난다.
 - ④ 성연관 유전자에 대한 열성 동형접합성(homozygous) 여성은 열성 형질이 나타난다.
 - ⑤ 성연관 열성 형질은 남성에서보다 여성에서 발현 빈도가 높다.

08. 표는 콩깍지의 모양이 편평하고 콩깍지의 색깔이 녹색인 완두 (AaBb)를 자가 교배하여 얻은 F₁의 표현형, 유전자형, 개수를 나타 낸 것이다.

표현형	유전자형	개수
편평하고 녹색	AABB, AaBB, AABb, AaBb	3907
편평하고 황색	AAbb, Aabb	1301
잘록하고 녹색	aaBB, aaBb	1303
 잘록하고 황색	aabb	434

완두의 콩깍지 유전에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 일어나지 않는다고 가정한다.)

— **|**보기**|** —

- □. 유전자 A와 B는 상동 염색체의 같은 자리에 위치한다.
- ⊢. F₁에서 잘록하고 녹색인 완두를 자가 교배하면 F₂에서 편평하고 녹색인 완두가 나오지 않는다.
- 다. 유전자 a와 b는 하나의 염색체에 존재하며 생식 세포 형성시 서로 분리되지 않고 함께 이동한다.
- ① ¬
- ② ∟
- (3) ⊏

- ④ 기, ∟
- ⑤ ¬, ⊏
- <u>⑥</u> ∟, ⊏

- ⑦ ᄀ, ㄴ, ㄸ
- **09.** 표는 유전자형이 AaBbCc인 개체를 검정 교배시켜 얻은 자손 100개체의 유전자형을 조사한 결과이다.

유전자형	개체수	유전자형	개체수
AaBbCc	19	AaBbcc	18
AabbCc	6	Aabbcc	7
aaBbCc	6	aaBbcc	7
aabbCc	19	aabbcc	18

이 자료에 대한 설명으로 옳은 것을 <보기>에서 있는 대로 고른 것은? (단, 유전자 A, B, C는 대립 유전자 a, b, c에 대해 각각 완전 우성이다.)

- [보기] --

- □. 유전자 A와 B의 교차율은 26%이다.
- ㄴ. 유전자 A, B, C는 모두 연관되어 있다.
- 다. 유전자형이 AaBbCc인 개체에서 생성될 수 있는 생식 세포의 유전자형은 6종류이다.
- ① ¬
- 2 L
- ③ ⊏

- ④ ¬, ∟
- ⑤ ¬, ⊏
- ® ∟, ⊏

⑦ ㄱ, ㄴ, ㄷ

10. 유전자형이 AaBb인 개체를 자가교배했을 때 자손의 표현형 분리비가 [AB]: [Ab]: [aB]+[ab] = 9:3:4가 되었다. 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- [보기] ---

- □. AaBb 개체의 A/a와 B/b는 상인연관되어 있다.
- ㄴ. AaBb 개체의 A/a와 B/b는 독립되어 있다.
- ⊏. A/a 유전자는 B/b 유전자에 대해 상위이다.
- 리. B/b 유전자는 A/a 유전자에 대해 상위이다.
- ① 7, ⊏
- ② ㄱ, ㄹ
- ③ ∟, ⊏
- ④ ㄴ, ㄹ
- 11. 인간의 염색체 돌연변이(chromosome mutation)에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- 【보기】 ——

- 그. 클라인펠터 증후군의 남성과 터너 증후군의 여성은 정상 남성이나 정상 여성보다 X염색체를 한 개 더 지니고 있다.
- L. 만성 골수성 백혈병(chronic myeloid leukemia)은 9번 염색체와 22번 염색체 간에 전좌(translocation)에 의해 유발되며, 해당 환자의 세포에서 필라델피아 염색체가 관찰되다.
- ㄷ. 다운 증후군은 21번 염색체가 3개 있는 경우에 발생한다.
- ① ¬
- ② L
- ③ ⊏

- ④ ¬, ∟
- ⑤ ¬, ⊏
- ⑥ ∟, ⊏
- ⑦ ᄀ, ㄴ, ㅌ
- 12. 각종 유전양식에 대한 설명으로 옳은 것은?
 - ① 다면발현(pleiotropy)은 1인자-1형질의 멘델 규칙이 적용된다.
 - ② 세포질유전(cytoplasmic inheritance)은 모계의 유전자형이 자손의 표현형을 결정하는 유전양식이다.
 - ③ 적록색맹(red-green blindness)은 남성보다 여성에서 발현 빈도가 높다.
 - ④ 유전체 각인(genomic imprinting)에서는 발생 초기에 DNA 메틸화/ 탈메틸화가 일어난다.
 - ⑤ 성염색체의 핵형이 XXY인 사람의 바소체는 1개이다.

[정답 및 해설]

- 01. ① 후기에는 염색분체의 두 자매 염색분체 분리가 일어난다.
- 02. ②, ⑤ M기에는 세포분열이 일어나며, S기에는 DNA 복제가 일어나고, G2기에는 세포크기의 성장과 방추사 구성 단백질(튜불린)의 합성이 일어난다.
- 03. ④ 감수1분열과 감수2분열 사이에는 DNA 복제가 일어나지 않고, 세포 질 분열이 일어나며, 상동 염색체 분리는 감수1분열에서 일어나며, 교차는 감수1분열 전기에 일어난다.
- 04. ② 세포질분열은 핵분열 말기에 시작할 때쯤 일어나기 시작한다. 염색 분체의 분리, 동원체 미세소관의 길이 짧아짐은 핵분열 후기에 일어나 며, 염색체 응축은 핵분열 전기에 일어나고, 극성 미세소관의 길이 길 어짐은 핵분열 전기부터 후기까지 일어난다.
- 05. ④ 멘델 유전의 유전자는 모두 서로 다른 염색체에 있는 것으로 간주 된다(독립의 법칙).
- 06. ④ AaBbCc인 개체는 자손에게 대문자 유전자를 0, 1, 2, 3개 전달하므로, 자손에게서는 대문자 유전자는 0, 1, 2, 3, 4, 5, 6개 갖는 개체가나타난다(7가지).
- 07. ⑤ 남성은 열성 유전자를 하나 지니게 되었을 때 열성 형질이 나타나지만, 여성은 열성 유전자 동형접합이 되었을 때만 열성 형질이 나타나므로 성연관 열성형질은 남성에서가 여성에서보다 그 발현 빈도가더욱 높다.
- 08. ② 자손의 표현형이 대략 9:3:3:1로 나타나므로 A/a 유전자와 B/b 유전자는 서로 다른 염색체에 독립되어 있다. 잘록(열성형질)한 완두 간에 교배했을 때 자손에서는 녹색(우성형질)은 나오지 않는다. A와 B 유전자는 대립유전자가 아니므로 상동 염색체의 같은 자리에 위치하지 않는다.
- 09. ① 자료에 제시된 경우를 종합하여 보았을 때, 검정교배를 수행한 유전자형이 AaBbCc인 개체는 유전자 A와 B가, 유전자 a와 b가 연관되어 있고, C/c는 독립되어 있다고 추정된다. 8가지 자손 개체 중 그 수가 적은 4개체의 비율이 바로 A/a 유전자와 B/b 유전자 간에 발생한 교차율(26%)이다. 해당 자료의 자손의 표현형이 8가지이므로, 유전자형이 AaBbCc인 개체가 생성한 생식세포의 유전자형도 8가지이다.
- 10. ③ 자손의 표현형 분리비 [AB]: [Ab]: [aB]+[ab] = 9:3:4는 [AB]: [Ab]: [aB]: [ab] = 9:3:3:1의 변형이며, A가 발현되지 않으면 B 대립유전자에 관계없이 동일한 표현형이 나타난다는 것이므로 A/a는 B/b과 독립이며, 상위이다.
- 11. ⑥ 터너증후군은 XO이므로, 정상 여성보다 X 염색체 수가 하나 더 적다.
- 12. 다면발현은 1인자-다형질 관계가 성립하는 유전양식이며, 세포질유전은 모계의 표현형이 자손의 표현형과 동일한 유전양식이고, 적록색맹은 X염색체 연관 열성 형질로서, 남성에서가 여성에서보다 발현 빈도가 높으며, 유전체 각인에서 DNA 메틸화/탈메틸화는 배우자 형성과정에서 일어난다. 바소체의 형성개수는 전체 X염색체 수 1 이므로성염색체 핵형이 XXY인 사람의 바소체는 1개이다.